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Abstract —The mechanical behavior of a granular system s greatly wnfluenced by its packing
geometry. {n this work. the concept of "Voronoi polyhedron™ s utilized to characterize granular
packings and it is shown that polyhedral tessellations can be used to represent packings of multi-
sized particles. A stress -strain theory. based on micro-mechanical considerations, for small defor-
mations of such packings is then deseribed. The derived stress-strain relationship is compared with
experimental resuits.

INTRODUCTION

Mechanical behavior of granular systems is of great importance in the arcas of soil mech-
anics, powder mechanics, bulk solid mechanics and other related fields. The study of overall
macroscopic behavior of granular systems in terms of continuum macroscopic ficld variables
should be carnied out with carclul microscopic considerations. Earlicr attempts at devel-
oping stress-strain relationships under small deformations were imited to simple regular
packings of equal-sized spheres (Deresiewicz, 19585 Dully and Mindlin, 1957 ; Makhlouf
and Stewart, 1967), following the procedure outlined by Dufty and Mindlin (1957). This
procedure considers a cubical representative cell and defines stress and strain for this cell
in a conventional manner. However, for more complicated packing contigurations which
do not exhibit cubic symmetry the choice ot cubic representative cell becomes difficult
(Makhlouf and Stewart, 1967). For such packings the definition of stress and strain from
conventional approach becomes cumbersome,

In this work, a method to the solution of stress-strain relations applicable to reguluar
packings of equal-sized particles with trictional contacts (Chang, 1987) is extended to
regular packings made of multi-sized particles. Polyhedral tessellations made of more than
one “Voronoi cell™ ire used to represent such packings. The formulation of the stress—strain
relationship s deseribed and the results are compared with experimental data observed from
tests performed on samples of cylindrical rods.

MICRO-STRUCTURAL CHARACTERIZATION

Granular systems consist of particles and associated voids arranged in space. To study
the micro-geometrical structure of such systems, the concept of “Voronoi polyhedron™ is
used. The packing can be completely divided into polyhedral cells such that each of these
cells contains one particle and its associated void space (Finncey, 1970).

Packings of equal-sized particles

For a packing of equal spheres or dises, the " Voronoi cell™ for a particle is defined as
the smallest polyhedron constructed of a sct of plancs which are perpendicular bisectors of
the vectors joining the center of the particle to the centers of its neighbors, such that no
further plane cuts the polyhedron.

A regular packing of equal-sized particles can be represented by an unique “"Voronoi
cell™, that is the packing can be constructed by repetitively stacking up this cell. Examples
of "Voronoi cells™ for some two-dimensional regular packings are shown in Fig. 1. The
void ratio of this cell. the ratio of void volume to the solid volume in this ccll, e¢quals the
voud ratio of the packing. The coordination number (that is the number of contacts per
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Fig. 1 Two-dimensional “Voronot cells”™ for (a) square packing, (b) rhombic packing, and (©)
hexagonal packing.

particle) of the cell equals the coordination number of the pucking. Thus every polyhedron
contains suflicient information to deseribe the void ratio and the coordination number of
the packing and the neighborhood of the assoctated particle.

More complicated packing structures of equal-sized spheres cunnot be represented by
an unique " Voronot cell™. Such packings are termed “hypo-regular’™ packings in this work.
These packings, in general, have multiple distinet “Voronoi cells™ and the representative
cell for such puackings, theretore, has to be a polyhedron consisting of ull these " Voronoi
cells™. This representative polyhedron of the packing is termed model tesscllation of the
packing in this work. The representative cell for a regular packing of equal particles is a
particular case of model tessellation where the tessellation s made of only one "Voronot
cell™.

Packings of multi-sized particles

For packings made of more than one size sphere or dise, the definition of “Voronoi
cell™ discussed in previous section is not appropriate, since it takes no regard of the particle
size. For such packings, a generalization of the concept of “Voronoi polyhedron™ called
the radical plune polyhedron is used (Finney, 1983). The planes forming the radicul plane
polyhedron are such that they are perpendiculir to the vector joining the centroids of the
particle and its neighbor. However, unlike the case of equal-sized particles, these planes are
not the biscctor of the vector joining the centroids. The location of the plane can be
determined as illustrated in Fig. 2 for the case of discs. The location of the planc is sclected
such that the plane passes through the point (O in Fig. 2) from which the tangent drawn
to the particle and its neighbor are equat (that is QA = OB in Fig. 2). The “*Voronoi cells”
defined in this manner can be used to completely divide the packings of multi-sized particles.

From the above discussion it is clear that packings of multi-sized particles will have
multiple distinct “VYoronot cells”™. Hence, the representative cell for such packings, as

a

discussed in the previous scction, will be a model tessellation.
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Fig. 2. Location of the plane forming the **Voronoi cell™ for packings of multi-sized particles.
P P

Tessellation

This section describes the structure of a model tessellation in more detail with the aid
of some examples. Figure 3 shows examples of two hypo-regular packings and two packings
of two-sized particles. The tessellations for these packings are shown by shaded areas in
the figure. The model tessellation of a packing can be defined as the polyhedron consisting
of all the possible shapes of “Voronoi cells™ forming that packing. Such a tessellation will
represent the packing, that is the packing can be constructed by repetitively stacking up
this polyhedron. To keep the shape of the tessellation simple, the constituent **Voronoi
cells™ can be split. Thus, the choice of the tessetlation to represent the packing can be made
in several ways. For example, in Fig. 4(a) the “Voronoi cell” containing the small particle

PACKING A PACKING 8

PACKING C PACKING D

Fig. 3. Examples of *hypo-regular™ packings (A and B) and packings of two-sized particles (C and
D) in two dimensions.
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Fig. 4. Two tessellations representing packing C of Fig. 3.

has been split into four and placed at diagonally opposite corners of the tessellation. This
tessellation represents packing Cin Fig. 3. Alternatively, the “"Voronoi cell” containing the
large particle can be split into four and placed at diagonally opposite corners of the
tessellation as shown in Fig. 4(b). Note that the contact points lying on the boundary of
the tesselluation for a split particle (points A in Fig. 4(b)) are shared with the contiguous
tessellation. For the packing C (see Fig. 3) the number of contacts for the large particle is
6 and the number of contacts for the small particle is 4, thus the average coordination
number is 5. For the tessellation shown in Fig. 4(a). the number of contacts for the large
particle is 6 and for the small particle is 4 (1 contact per quarter), thus the total number of
contacts for the tessellation is 10 and the coordination number, as expected. is 5. For the
tessellation shown in Fig. 4(b). the number of contacts for the large particle is 8 (2 contacts
per quarter of large particle) and the number of contacts for the small particle s 4, thus
the total number of contacts for the tessellation is 12, However, since the contacts A in Fig,
4(b) (two contact points at top A and two at bottom A) are shared, the average coordination
number of the tessellation is 5 which is same as that of the packing. Furthermore, the void
ratio (ratio of the arca of vouds to the arca of solids) of the packing is same as the void
ratio of its representative tesseltations shown in Fig. 4(a) and (b).

STRESS STRAIN THEORY

In this scction the theory developed for regulur puckings of cqual-sized particles
(Chung. 1987) 1s extended to packings of multi-sized particles and “hypo-regular’ packings
using model tessellation as the representative cell of the packing.

Stress tensor for the pucking

According to the theorem of stress means (Truesdell and Toupin, 1960 ; Landuau and
Liphschitz, 1939), considering the static equilibrium and using the divergence theorem it
can be shown that the stress tensor due to the boundary forces on the ath “Voronol
polyhedron™ is given by

I [ 1
:‘I T o, dv =, Oyl ik dv
K, v, Ve v,

oY =
] o
=, | o,rmdS= - |rt dS (hH
V, s V., Js
or, for a discrete system,
N,
o,:ll - ‘/ Z r::mr;m (2)

aom= |

where F, is the volume of the “*Voronoi cell™, .V, is the number of contacts in that “*Voronoi

cell™, " is the vector joining the center of the ath particle to the mith contact, and ¢4 is
the force at the mth contact of the ath particle. The tensor summation convention is assumed
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for the subindices. Since a packing, in general, is made of multiple distinct “*Voronoi cells™,
the stress field for the packing will generally be inhomogeneous. The average stress tensor
for the packing is defined for the tessellation (representative cell) as a volume average
quantity of stress, ¢?,. for the "Voronoi cells” comprising that tessellation. Thus

.| .
Glj=?za:‘[l/u (3)

where } = Z 17, is the volume of the tessellation given by

u

b= 1(l+e) (@)

where 17, is the volume of the solid within the tessellation and e s the void ratio (ratio of
the volume of voids to the volume of solids) of the tessellation. Introducing eqn (2) into
eqn (3) it can be written that

. |
= L LI (3)

a m

where the first summation is over all the Voronot cells in the tessellation and the second
over all the contacts in the ath Yoronoi cell. Note that some of the contacts in the tessellation
are shired with the neighboring tessellation (e.g. contact points A in Fig. 4(b)) and therefore
the force at these contacts will also be shared. This should be appropriately accounted for
the term )" inegn (5). Various forms of representations of stress tensor as a volume average
of the contact forees have been suggested (Chnistoffersen ef al., 1981 Kishino, 1978
Rothenburg and Selvadurai, 1981 ; Satake, 1978).

Since the size of the model tessellation ts very small compared to the size of the packing,
the stress tensor 4,,, introduced by the volume averaging process discussed above, can be
considered to be same as Cauchy stress tensor of the continuum mechanics. Further, it can
be shown that the average stress tensor 4, has all the propertics of the Cauchy stress tensor
(Rothenburg and Selvadurai, 1981). That is, the foree f; acting per unit area of a plane in
the packing with a normal M is given by f, = 6, N, and that the stress tensor d,, satisfies the
equation of static equilibrium. This definition of the stress tensor is used here to study the
granular packing as a continuum media as it includes all the micro-geometrical charac-
teristics of the packing.

Strain tensor for the packing

Similur to the stress tensor for the packing, in order to study the behavior of granular
packing as a continuum media, there is a need to detine a relationship between strain tensor
and contact displacement. The particles in the assembly are considered to be rigid and
conceptually connected with their contacting neighbors by deformable springs. [tis assumed
that the springs at the contacts are not destroyed during the deformation. The contact
displacement refers to the deformation of the conceptual springs. From encrgy arguments,
the work done described in terms of macro-variables, stress and strain, must cqual the work
done described in terms of micro-variables, force and displacement at the contacts. Equating
the two works it gives

Vi di, =TT 6™ (i, j = x.y.2) ©®

where 4, is the stress state of the tessellation, and d, is the corresponding incremental
strain. (4™ is the force acting on the point am (i.e. the mth contact of the ath particle), and
diy™ is the displacement of point am. Note that in the double summation in eqn (6) each
contact is counted twice, once for each particle in contact. Thus the total deformation of
the springs at contact /m is du = du*" +du™, where a and b are two particles in contact.
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Substituting stress ¢,, in eqn (6) in terms of contact force 4™ from eqn (5) and assuming
that the work done at each contact described in terms of macro-varables is equal to that
1n terms of micro-variables. we obtain

rmdE, = dud” (7)

thus relating the strain tensor to the contact displacements. The underlying assumption here
is that the strain field is homogeneous in the tessellation. Thus it is only applicable to the
conditions where the strain is relatively uniform. Furthermore, the effects of large strains
leading to the loss of contact are not considered in this analysis.

Local force-displacement relationship at a contact

For convenience, the displacement ™ in X'YZ coordinate system can be transtormed
to duy™ in the local coordinate system, nsr, by a transformation tensor LY} for the mth
contact, thus

du™" = Ly dud” ()

where the local coordinate system is constructed for each contact with three orthogonal
unit vectors n, the unit vector normal to the contact point, s, and t. The vectors s and tare
defined in Fig. Sin the global XYZ coordinate system, where s is chosen to lic in the plane
formed by nand Z. The angle f#is measured on XY planc in a counter-clockwise direction
from the positive X-axis and the angle 2 is measured from the positive Z-axis to the normal
vector, Both x and ff range from 0 to 180 degrees.

Similarly, the force vector ¢4 in the global coordinate system, XY YZ, can be transformed
to " tn the local coordinate system. Thus egn (5) becomes

|
d, =, L "L 9)

w m

The displacement ™ can be related to the incremental foree def™ at the mith contact
by the following local constitutive law

ant

de” = ¢ dwt (10)

where ¢ represents the stittness constants for the springs connecting two puarticles in
contact. For the contact of two non-conforming clastic bodies, ¢, are determined from
contact theory as will be discussed later.

Fig. 3. Local coordinate system.
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Constitutive equations of a packing
Introducing eqn (10) into eqn (8) and noting that L,L,, =4, (Kronecker delta), it
follows that

ciFLT g, = def. (rn

Further, multiplying both sides by the transformation matrix L,, and the position vector
r.eqn (11) becomes

AL LT, = P, (12)

gl

Summing up on both sides, it can be written that
dé,, = Dy, diy; (13)
where

|
"oy um am am .,
DI./:/ = l‘; Z Z 'JI‘“L,[I (‘I"I"L./] i’ . and

a4 m

1
ddy =, ¥ X Arde. (14)

a m

Noting that the stress and the strain tensors are symmetric, the stiffness tensor must have
the symmetries: Dy, = D, = D,,;. Further, since the focal stiffness tensor ¢, is symmetric,
the overall constitutive tensor satisfics the following: D, = Dy,

The incremental work done for the packing due to an increment of stress is the
summation of the incremental work done at all contact points due to the consequent contact
displacements. Thus the preservation of non-negativity of incremental energy for each con-
tact point implies that the incremental energy for the packing is non-negative. In order to
preserve a non-negative incremental energy for the packing, the contact foree -displacement
relationship should be adequately defined. In this study, the Mindlin contact theory is
employed for the contact force-displacement relationship (Mindlin, 1949).

EXAMPLES

Based on the stress-striain developed in the preceding sections, the behavior of four
packing configurations of cylinders (two-dimensional packings) is discussed in this section.
Laboratory experimental tests were also performed on these packings. The experimental
data obtained from these tests are compared with the theoretical predictions.

Puckings

The packings chosen in this work are shown in Fig. 3. A and B are hypo-regular
packings of cqual diameter cylinders. C and D are packings made of two different-sized
cylinders. The model tessellation (representative cell) of the packings is shown by the shaded
portion of the packings. The void ratio ¢ of the packings and the coordination number of
the tessellation are also shown in Table 1. The ratio of the diameters of the two cylinders
forming packing Cis 2:1, and packing D is 2: [.5.

Table 1. Some geometrical propertics of the four packings

Packing Void ratio ¢ Coordination No.

A 0.1880 5.00
B 0.4702 4.00
C 0.1388 5.00
D 0.2154 4.67
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Stress-strain matrix for the packings
For a two-dimensional case of packing of cylinders, the stress—strain relationship ((eqn
(13)) derived in the preceding section can be written in Voigt's notation as

O« 1 DI | Dl: Dl} Erc
O = % D., D:: Dy &y (- (15)
Ty DJI D)Z DJ) 28(»’

Two types of information are needed to evaluate D,; in eqn (15), namely (1) packing
geometry and (2) force-displacement relationship at the contact. The geometric properties
for the packing. consisting of the volume of the tessellation and the coordinates of the
contacts within a tessellation, have been discussed previously.

For a two-dimensional case of mating cylinders, the force-displacement relationship
at a contact (eqn (10)) can be explicitly expressed as follows

{dr"} _ [(" 0] {du,,} (6)
dt, 0 ¢ | du,

where ¢, and ¢, are the contact normal and shear stiffnesses respectively. The normal stiffness
¢, has been obtained by Hertz assuming that cach cylinder is an clastic half space loaded
by a parabolic pressurc distribution. The Hertz theory was extended by Cattanco (1938)
and Mindlin (1949) to derive the relationship for tangential stiffness ¢, (Johnson, 1985).
Based on empirical data, moditications of these relationships have been suggested under
conditions of local yielding at the contact (Misra, 1987). The modified relationships are
given by

e, = '7;(;[2 In (2r/d)—1] (17)

l/e, = e, P[1—¢/(tan ¢ 1,)] ** (18)

where d = (1 =v)1,r/nG)' Gis an equivalent shear modulus which is less than the clastic
shear modulus when local yielding occurs, v is the Poisson’s ratio, r is the equivalent radius

of the particles given by
S 1
r -~ rs

¢, is the friction angle between the two particles, ¢, and ¢, are the normal and shear force
at the contact respectively, W is a constant, r, and r, are the radius of the two mating
cylinders. It is noted that for ¥ equal to | the above equation reduces to that suggested by
Mindlin.

Comparison with experimental results

The experimental setup consists of a loading frame so designed as to be able to apply
both normal and shear loading on a sample of cylindrical rods placed inside it. The rod
assembly is placed on a glass table top such that the cylinders stand vertically on the table.
The sample consists of an assembly of approximately 300 aluminum cylinders, of 2 in.
(5.08 cm) height, placed in accordance with a given packing arrangement. For equal-sized
packings, packings A and B, the diameter of the cylinders used was 0.5 in. (1.25 cm). For
packings C, the diameter of the cylinders used were 0.5 in. (1.25 cm) and 0.25 in. (0.625
cm) and for packing D, 0.75 in. (1.875cm) and 0.5 in. (1.25 cm). Two factors may influence
the measured data. namely the flexibility of the loading frame and the friction at the bottom
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Fig. 6. Louding path followed for the experimental tests plotted on a normalized stress plane.

of rod assembly. Since the loading frame used is relatively rigid with respect to the rod
assembly and since for all the tests the stress magnitude ts much larger than the friction at
the bottom, the effect of these factors is expected to be insignificant. However, calibration
was carried out to account for these in the test results (Xue, 1988). The loading conditions
followed for the tests are illustrated in Fig. 6 on a normalized deviatoric stress vs shear
stress plot. All the tests have an isotropic initial stress state, represented by the point of
origin in Fig. 6. An initial isotropic stress at 2.5 psi (17.24 kN/m®) is uscd for all the tests.
Tests were performed for various values of angle o, which is the inclination of the principal
stress axis to the chosen material axis ( Y-axis in Fig. 3). All the tests were performed several
times and fairly repeatable test results were obtained.

To compare with the experimental results, the response of the four packings under the
loading conditions discussed above were computed using the theory. The values of the
constants used for theoretical computations in this work are: G = 15000 psi (105000
KN/‘m?), W =25, v=0.1, and ¢, = 15" The measured results are plotted along with the
predicted theoretical results as shown in Fig. 7(a~d) for the four packings, respectively. The
observed scatter in the measured results is consistent with the repeatability of the tests.

Figure 8(a-d) shows the efiect of rotation of the principal stress axis on the stress—
strain response of the four packings, respectively. The meusured results are plotted along
with the predicted theoretical results for the various values of % on a normalized strain axis.
With increase in %, the ratios y,, /e, and € /¢,, as expected, increase for all the packings. A
fairly good agreement is obtained between the measured and the predicted results.

Investigation of the strain increment direction shows that the four packings exhibit
different behavior of non-coaxiality between stress and strain increment directions. Figure
9(a-d) shows the angle of non-coaxiality plotted against the stress direction « for the two
packings. The measured values are plotted along with the theoretical results. It is noted
that small variation in the measured values of strains can cause large differences in the non-
coaxiality angle. Thus, considering the scatter in the measured data, the agreement obtained
between the theoretical and the experimental values of the non-coaxiality angles is reason-
ably good.

In addition to the deformation responsc of the packings the contact forces within the
tessellation are also computed. As an example, the contact forces within the tessellation
(sce Fig. 4(b)) for packing C are shown. Figure [0(a) shows the contact forces for the initial
isotropic stress state. It can be scen that for an overall isotropic stress state there are shear
forces on the contacts. Figure 10(b) shows the contact forces for the same tessellation after
a load increment in the direction of x = 45°. It can be observed that for this packing all the
particles in the tessellation are in equilibrium. However, because of the volume averaging
process in the formulation, the force and moment equilibrium for individual particles are
not guaranteed,
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Fig. 7. Compurison of measured and predicted strains for (a) packing A ; (b) packing B (c) packing
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Fig. 10, Contuct forces within the tessellation for packing C.

CONCLUDING REMARKS

From the experimental results and the theoretical predictions it is apparent that packing
arrangement has great influence on the stress-strain behavior of the granular systems. The
comparison of the results shows that the developed theory can properly account for the
effect of packing arrangement on the deformation response.
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