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Abslracl-The mechanical behavior of a granular system is greatly influenced by its packing
geometry, In this work. the concept of "Voronoi polyhedron" IS utilized to characterize granular
packings and it is shown that polyhedral tessellations can be used to represent packings of multi­
sized particles. A stress strain thel1ry. based on micro-mechanical considerations. for small defor­
mations of such packings is then described. The derived stress--strain relationship is compared with
e'pcrimental results.

INTRODUCTION

rvh:chanical behavior of granular systems is of great importance in the areas of soil mech­
anics. powder mechanics. bulk solid mechanics and other related fields. The study of overall
macroscopic behavior ofgranular systems in terms ofconlinuum macroscopic liekl variables
should he carried out with careful microscopic considerations. Earlier attempts at devel­
oping stress strain relationships under small deformations were limited to simpk regular
packings of eq ual-sized spheres (Den.:siewicz. I95X; Dutfy and Mindlin. 11)57; Mak hlouf
and Stewart. 1%7), following the procedure outlined hy DullY and Mindlin (1957). This
procedure considers a cuhical representative cell and ddines stress and strain for this cell
in a conventional manner. I [owever. for more complicated packing conligurations which
do not exhihit cuhic symmetry the choice of cubic representative cell bewmes dillicult
(Makhlouf and Stewart. 1%7). For such packings the ddinition of stress and strain from
conventional approach becomes cumbersome.

In this work. a mclhod to the solution of stress- strain n.:lations applicable to regular
packings of equal-sized particles with frictional wntacts (Chang. 1l)~7) is extended to
rcgular packings madc of multi-sized particlcs. Polyhedral tessellations made of more than
one "Voronoi cell" arc used to represent such packings. The formulation of the stress-strain
relationship is described and the results arc compared with experimental data observed from
tests performed on samples of cylindrical rods.

MICRO-STRUCTURAL ClIARACTERIZATIO-':

Granular systems consist of particles and associated voids arranged in space. To study
the micro-geometrical structure of such systems. the concept of "Voronoi polyhedron" is
used. The packing can be completely divided into polyhcdral cells such that each of thcse
cells contains one particle and its associated void space (Finney. 1970).

Paekillgs (~/ 1!(/lItL!-si:ed particles
For a packing of equal spheres or discs. the "Voronoi cdl" for a particle is defined as

the smallest polyhedron constructed of a set of planes which arc perpendicular bisectors of
the vectors joining the center of the particle to the centcrs of its neighbors. such that no
further plane cuts the polyhedron.

A regular packing of equal-sized particles can bc represented by an unique "Voronoi
cell". that is the packing can be constructed by repetitively stacking up this cell. Examples
of "Voronoi cells" for some two-dimensional regular packings are shown in Fig. I. The
void ratio of this cell. the ratio of void volume to the solid volume in this cell. equals the
void ratio of the packing. The coordination number (that is the number of contacts per
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Fig. l. Two-dimt:nsional "Voronoi t:dls" for (a) squart: rackin~. (0) rlHlIllOi<: padin~. and «:)
ht:.ugon.t1 pa<:king.

partide) of the cell equals the coordination number of the packing. Thus every polyhedron
contains sullicient information to describe the void ratio and the coordination number of
the packing and the neighborhood of the associated particle.

More complicated packing structures of equal-sized spheres cannot be represented by
an unique "Voronoi cell". Such pal.:kings arc termed "hypo-regular" packings in this work.
These pal.:kings. in general. have multiple distinl.:t "Voronoi I.:ells" and the representative
cell for sUl.:h packings. therefore. has to be a polyhedron I.:onsisting of all these "Voronoi
cells". This representative polyhedron of the pal.:king is termed model tessellation of the
pal.:king in this work. The repn:sentative cdl for a regular packing of equal particles is a
particular case of modcl tessellation where the tessellation is made of only one "Voronoi
cell".

P(/ckifl.l/S oj' 1II11Iti-si::.et! [Iurticles

For packings made of more than one size sphere or disl.:. the definition of "Voronoi
cell" disl.:ussed in previous section is not appropriate. since it takes no regard of the particle
size. For SUdl packings. a generalization of the concept of "Voronoi polyhedron" called
the radical plane polyhedron is used (Finney. 19X3). The planes forming the radical plane
polyhedron arc such that they arc perpendil.:ular to the vector joining the centroids of the
particle and its neighbor. However. unlike the case of equal-sized particles. these planes are
not the bisector of the vector joining the centroids. The location of the plane can be
determined as illustrated in Fig. 2 for the case of discs. Thc location of the plane is selected
such that the plane passes through the point (0 in Fig. 2) from which the tangent drawn
to the particle and its neighbor are equal (that is OA = OB in Fig. 2). The "Voronoi cells"
defined in this manner can be used to completely divide the packings of multi-sized particles.

From the above discussion it is clear that packings of multi-sized particles will have
multiple distinct "Voronoi cells". Hence. the rcprescnt<ltive cell for such packings. as
discus'ied in the previolls section. will be a model tessellation.
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Fig. 1. Location of the plane fonning the "Voronoi cell" for packings of multi-sized particles.

667

Tessellation
This section describes the structure of a model tessellation in more detail with the aid

of some examples. Figure 3 shows examples of two hypo-regular packings and two packings
of two-sized particles. The tessellations for these packings are shown by shaded areas in
the figure. The model tessellation of a packing can be defined as the polyhedron consisting
of all the possible shapes of "Voronoi cells" forming that packing. Such a tessellation will
represent the packing. that is the packing can be constructed by repetitively stacking up
this polyhedron. To keep the shape of the tessellation simple. the constituent "Voronoi
cells" can be split. Thus. the choice of the tessellation to represent the packing can be made
in several ways. ror example. in rig. 4('1) the "Voronoi cell" containing the small particle

PACKING A

PACKING C

PACKING B

PACKING D

Fig. 3. E~amples of "hypo-regular" packings (A and B) and packings of two-sized particles (C and
0) in two dimensions.
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A

D ~
A
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Fig. 4. Two tessellations representing packing C of Fig. 3.

has been split into four and placed at diagonally opposite corners of the tessellation. This
tessellation represents packing C in Fig. 3. Alternatively. the "Voronoi cell"' containing the
large particle can be split into four and placed at diagonally opposite corners of the
tessellation as shown in Fig. 4(b). Note that the contact points lying on the boundary of
the tessellation for a split particle (points A in Fig, 4(b)) are shared with the contiguous
tessellation, For the packing C (sec Fig. 3) the number of contacts for the large particle is
6 and the number of contacts for the small particle is 4, thus the average coordination
number is 5. For the tessellation shown in Fig. 4(a), the number of contacts for the large
particle is 6 and for the small particle is 4 (I contact per quarter), thus the total number of
contacts for the tessellation is 10 and the coordination number. as expected. is 5. For the
tessellation shown in Fig. 4(b). the number of contacts for the large particle is S (2 contacts
per quarter of large particle) and the number of contacts for the small particle is 4, thus
the total number of contacts for the tessellation is 12. However. since the contacts A in Fig.
4(b) (two contact points at top A and two at bottom A) are shared. the average coordination
Iltllllber of the tessellation is 5 which is same as that of the packing. Furthermore, the void
ratio (ratio of the area of voids to the an:a of solids) of the packing is sallle as the void
ratio of its representative tessellations shown in Fig. 4(a) and (h).

STRFSS STR:\I"-l TIIFORY

In this section the theory developed for regular packings of equal-sized particles
(Chang. IlJX7) is extended to packings of multi-sized particles and "hypo-regular" packings
using model tessellation as the representative cell of the packing.

,'-l'(1'£'.1.1 (£,1/.1(/1' .lin' (he {lack ifl.tJ

According to the theorem of stress means (Truesdell and Toupin, 1960; Landau and
Liphschitz. IlJ59). considering the static equilibrium and using the divergence theorem it
can be shown that the stn:ss tensor due to the boundary forces on the ath "Yoronoi
polyhedron" is given hy

(I)

or, for a discn:te system.

(2)

where V" is the volume of the "Voronoi cell", Ny is the nut1l ber ofcontacts in that "Yoronoi
cell". 1","" is the vector joining the center of the ath particle to the mth contact. and 1';'" is
the force at the filth contact of the lith particle. The tensor summation convention is assumed
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for the subindices. Since a packing. in general, is made of multiple distinct "Voronoi cells".
the stress field for the packing will generally be inhomogeneous. The average stress tensor
for the packing is defined for the tessellation (representative cell) as a volume average
quantity of stress. (j~J" for the "Voronoi cells" comprising that tessellation. Thus

(3)

where ~. = L ~'d is the volume of the tessellation given by

(4)

where ~', is the volume of the solid within the tessellation and e is the void ratio (ratio of
the volume of voids to the volume of solids) of the tessellation. Introducing eqn (2) into
eqn (3) it can be written that

I
a· = --. '" '" r.''''('''." vL..L..' ,

d nr

(5)

where the first summation is over all the Voronoi cells in the tessellation and the second
over all the contacts in the ath Voronoi cell. Notc that some of the contacts in the tessellation
are shared with the neighboring tcssellation (e.g. contact points A in Fig. 4(b) and therefore
the force at thcsc contacts will also hc shared. This should he appropriately accountcd for
the term r;'" in eqn (5). Various forms of n:prcsentations of stress tensor as a volume average
of the conlad forces have heen suggested (Christoffersen I't al.. In I; Kishino, 197M;
ROlhcllhurg and Sclvadurai. 19XI ; Satake. 197X).

Since lhe size of the modcltcssellation is very small compared to the size of the packing.
the stress tensor IT", introduced hy the volume averaging process discussed above, can bc
consitkred to he same as Cauchy stress tensor of the continuum meehanics. Further, it can
he shown that the average stress tensor IT" has .tll the properties of the Cauchy stress tensor
(Rothenburg and Sclvadurai, 19H I). That is, the fon:e f, acting per unit area of a plane in
the packing with a normal N is given by j; = IT"N, and that the stress tensor a'i satisfies the
cquation of static cquilibrium. This dcfinition of thc stress tensor is used here to study the
granular packing as a continuum media as it includes all the micro-geometrical charac­
teristics of the packing.

Strain tensor jilr the packinlJ
Similar to the stress tensor for the packing, in order to study the behavior of granular

packing as a continuum media, there is a need to define a relationship between strain tensor
and contact displacement. The particles in the assembly arc considered to be rigid and
conceptually connected with their contacting neighbors by dcformabk springs. It is assumed
that the springs at the contacts arc not destroyed during the deformation: The contact
displacement refers to the deformation of the conceptual springs. From energy arguments,
the work done described in terms of macro-variables, stress and strain, must equal the work
done described in terms of micro-variables. force and displacement at the contacts. Equating
the two works it gives

va,/II:" = LL t~"'dlt;'" ;
" '"

(i, j = x,y.:) (6)

where a" is the stress state of the tessellation. and ell:/I is the corresponding incremental
strain. ~'" is the force acting on the point am (i.e. the mth contact of the ath particle). and
c/u';'" is the displacement of point am. Note that in the double summation in eqn (6) each
contact is counted twice. once for each particle in contact. Thus the total deformation of
the springs at contact m is du = dud'" +duh

"'. where a and h are two particles in contact.
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Substituting stress a" in eqn (6) in terms ofcontact force r;m from eqn (5) and assuming
that the work done at each contact described in terms of macro-variables is equal to that
in terms of micro-variables. we obtain

(7)

thus relating the strain tensor to the contact displacements. The underlying assumption here
is that the strain field is homogeneous in the tessellation. Thus it is only applicable to the
conditions where the strain is relatively uniform. Furthermore. the etfects of large strains
leading to the loss of contact are not considered in this analysis.

Local jiirce-displllcement relationship at a contact
For convenience. the displacement dll,;m in xrz coordinate system can be transformed

to dll~m in the local coordinate system. fISt. by a transformation tensor C;7 for the mth
contact. thus

(X)

where the local coordinate system is constructed for each contact with three orthogonal
unit vectors n. the unit vector normal to the contact point. s. and t. The vectors sand tare
defined in Fig. 5 in the global XYZ coordinate system. where s is chosen to lie in the plane
formed hy nand Z. The angle {I is measured on XY plane in a counter-clockwise direction
from the positive X-axis and the angle 'X is measured from the positive Z-axis to the normal
vector. Roth 'X and {f range froll1 0 to IXO degrees.

Similarly. the force vector t';''' in the global coordinate system. XYZ. can be transformed
to t';" in the local coordinate system. Thus eqn (5) becomes

I
d = , '"' r"'" Llim /""t

'I V L L' Ii (i .
II ",

The displacement dll~'" can be related to the incremental force dt1'" at the mth contact
hy the following local wnstitutive law

( 10)

when.: c1~' n:pn:sents the stitrness constants for the springs connecting two particles in
contact. For the contact of two non-conforming elastie bodies. CIJ arc determined from
contact theory as will be discussed later.

z

,k-+---+------y

x
Fig. 5. Local coordinate system.
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Constitutire equations of a packing
Introducing eqn (10) into eqn (8) and noting that L"L'i = tJrj (Kronecker delta), it

follows that

(II)

Further. multiplying both sides by the transformation matrix Lql and the position vector
'1' eqn ( II) becomes

(12)

Summing up on both sides. it can be written that

where

1
D ., = ~- , , ~""L(Jnrc"m Lanrr'!'" .

Iql' V L. L. I "I If 11 I •

" m

I/- " " ...,m I .""1I(f1" = vL.L.'1 it" .
a m

and

(13)

( 14)

Noting that the stress and the strain tensors are symmetrie. the stiffness tensor must have
the symmetries: DI"" = D"iI, = DI"i" Further. since the local stiffness tensor elf is symmetric.
the overall constitutive tensor satisfies the following: DI"" = Di,I".

The incremental work done for the packing due to an increment of stress is the
summation of the incremental work done at all contact points due to the consequent contact
displacements. Thus the preservation of non-negativity of increment:lI energy for each con­
t'lI:t point implies that the incremental energy for the packing is non-negative. In order to
preserve a non-negative incremental energy for the packing. the contact force-displacement
relationship should be adequately detined. In this study. the Mindlin contact theory is
employed for the contact force-displacement relationship (Mindlin. 1949).

EXAMPLES

Rased on the stress-strain developed in the preceding sections. the behavior of four
packing configurations of cylinders (two-dimensional packings) is discussed in this section.
Laboratory experimental tests were also performed on these packings. The experimental
data obtained from these tests an: compared with the theoretical predictions.

Packit/51.1'
The packings chosen in this work arc shown in Fig. 3. A and B are hypo-regular

packings of equal diameter cylinders. C and Dare packings made of two different-sized
cylinders. The model tessellation (representative cell) of the packings is shown by the shaded
portion of the packings. The void ratio c of the packings and the coordination number of
the tessellation arc also shown in Table I. The ratio of the diameters of the two cylinders
forming packing C is 2: I. and packing D is 2: 1.5.

Tahle I. Some geometrical properties of the four p;ll:kings

Packing

A
B
C
D

Void ratio l'

O.IRKO
0.4701
O.I)!!!!
0.1154

Coordination No.

5.00
4.00
5.00
4.67
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Stress-strain matrix for the packings
For a two-dimensional case of packing ofcylinders. the stress-strain relationship «eqn

(13» derived in the preceding section can be written in Voigt's notation as

( 15)

Two types of information are needed to evaluate Di } in eqn (15), namely (I) packing
geometry and (2) force-displacement relationship at the contact. The geometric properties
for the packing, consisting of the volume of the tessellation and the coordinates of the
contacts within a tessellation, have been discussed previously.

For a two-dimensional case of mating cylinders, the force-displacement relationship
at a contact (eqn (10» can be explicitly expressed as follows

( 16)

where c" and c, arc the contact normal and shear stilTnesses respectively. The normal stiffness
C" has been obtained by Hertz assuming that each cylinder is an elastic half space loaded
by a parabolic pressure distribution. The Hertz theory was extended by Cattaneo (1938)
and Mindlin (1949) to derive the relationship for tangential stiffness c, (Johnson, 1985).
Based on empirical data, modifications of these relationships have been suggested under
conditions of local yielding at the contact (Misra, 1987). The modified relationships arc
given by

I-v
I/c" = "i [2 In (2rlli) - I]

2n(,

lie, = Ilc"'P[I-t,/(tan cP~t")l' u

( 17)

( 18)

where Ii = (2( 1- v)t.,rlnG) li~, C is an equivalent shear modulus which is less than the elastic
shear modulus when local yielding occurs, \' is the Poisson's ratio, r is the equivalent radius
of the particles given by

( 19)

(PI' is the friction angle between the two particles, t" and t, are the normal and shear force
at the contact respectively, 'P is a constant, rl and r~ are the radius of the two mating
cylinders. It is noted that for 'P equal to I the above equation reduces to that suggested by
Mindlin.

Comparison with experimental results
The experimental setup consists of a loading frame so designed as to be able to apply

both normal and shear loading on a sample of cylindrical rods placed inside it. The rod
assembly is placed on a glass table top such that the cylinders stand vertically on the table.
The sample consists of an assembly of approximately 300 aluminum cylinders, of 2 in.
(5.08 cm) height, placed in accordance with a given packing arrangement. For equal-sized
packings, packings A and B, the diameter of the cylinders used was 0.5 in. (1.25 cm). For
packings C. the diameter of the cylinders used were 0.5 in. (1.25 cm) and 0.25 in. (0.625
cm) and for packing D, 0.75 in. (1.875 cm) and 0.5 in. (1.25 cm). Two factors may influence
the measured data, namely the flexibility of the loading frame and the friction at the bottom
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Fig. 6. Loading path followed for the e~perimental tests plotted on a normalized stress plane.

of rod assembly. Since the loading frame used is relatively rigid with respect to the rod
assembly and since for all the tests the stress magnitude is much larger than the friction at
the bottom. the effect of these factors is expected to be insignificant. However. calibration
was carried out to account for these in the test results (Xue. 1988). The loading conditions
followed for the tests are illustrated in Fig. 6 on a normalized deviatoric stress vs shear
stress plot. All the tests have an isotropic initial stress state, represented by the point of
origin in Fig. 6. An initial isotropic stress at 2.5 psi (17.24 kN/m~) is used for all the tests.
Tests were performed for various values of angle IX, which is the indination of the principal
stress axis to the chosen material axis ( Y-axis in Fig. 3). All the tests were performed several
times and fairly repeatable test results were obtained.

To compare with the experimcntal results, the response of the four packings under the
loading conditions discussed above were computed using the theory. The values of the
constants used for theoretil:al computations in this work arc: {} = 15000 psi (105000
kN/m~). 'I-' = 2.5. \' :: 0.1. and (P~ = 15'. The measured results are plotted along with the
predil:ted theoretil:al results as shown in Fig. 7(a-d) for the four packings. respectively. The
observed scatter in the measured results is consistent with the repeatability of the tests.

Figure 8(a-d) shows the efrcct of rotation of the principal stress axis on the stress­
strain response of the four packings, respectively. The measured results are plotted along
with the predicted theoretical results for the various values of:'t on a normalized strain axis.
With increase in :'t. the ratios 'I "./e, and c,/I::,.. as expected. increase for all the packings. A
fairly good agreement is obtained between the measured and the predicted results.

Investigation of the strain increment direction shows that the four packings exhibit
ditferent behavior of non-coaxiality between stress and strain increment directions. Figure
9(a-d) shows the angle of non-coaxiality plotted against the stress direction C( for the two
packings. The measured values arc plotted along with the theoretical results. It is noted
that small variation in the measured values of strains can cause large ditferenees in the non­
coaxiality angle. Thus. considering the scatter in the measured data. the agreement obtained
between the theoretical and the e.'<perimental values of the non-coaxiality angles is reason­
ably good.

In addition to the deformation response of the packings the contact forces within the
tessellation are also computed. As an example. the contact forces within the tessellation
(see Fig. 4(b» for packing C arc shown. Figure 10(a) shows the contact forces for the initial
isotropic stress state. It can be seen that for an overall isotropic stress state there arc shear
forces on the contacts. Figure lO(b) shows the contact forces for the same tessellation after
a load increment in the direction of 1: = 45'. It can be observed that for this packing all the
particles in the tessellation arc in equilibrium. However. because of the volume averaging
process in the formulation. the force and moment equilibrium for individual particles arc
not guaranteed.
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Fig. 9. Measured and prediclt.-d non-coaxiality angle plotted against loading direction IX for (a)
packing A: (b) packing B; (e) packing C; (d) packing D.



6l:l0 CHJ~G S. CHA~G et al.

0.299 _

0.12~
/

0.73 0.73

'>f~0.1~Oo.12
0.1" 0.12

/ ,
0.7J 0.7J

ri·" o·"lJ_ 0.299 _

(a)

lltit02
~0.14

'\

O. ))

0.02

~/0,\ o.n

O. L[OO<, 1.2
O. L2 O. L4

/ "o.n 0.72

O'~lJD.P
O.n _I

(b)

Fig. 10. Conta~t for~es within the tessellation for packing C.

CONCLUDING REMARKS

From the experimental results and the theoretical predictions it is apparent that packing
arrangement has great intluence on the stress-strain behavior of the granular systems. The
comparison of the results shows that the developed theory can properly account for the
effect of packing arrangement on the deformation response.
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